手机浏览器扫描二维码访问
柯西的办公室,也是他工作的地方。
满屋子堆满了信件和纸张。
有论文,草稿,还有外面的人给自己的信件。
论文有自己的,有学生的,还有收集的同行的。
草稿有计算的,设计的,画图的,已经用完的和用到半中间的。
信件有同行的,有有梦想的人的新想法,还有民科的垃圾文。
柯西一开始还可以应付这些东西,但随着量的增加,只能是有哪个看哪个的了。
他苦恼于自己敢接如此庞大的活。以为可以发现人才,交流思想,但是自己根本没有那么多精力。
柯西开始研究关于复数坐标系中的微积分。
如果在复数里,那种微积分就需要借鉴一种多元的方程的微积分的思想。
严格的柯西必须要弄清楚其中微积分的条件。
在二维直角坐标系的直线中需要连续可导,但在三维以上的坐标系中的可微,就麻烦了,它起码是两个以上的方向了。
柯西找到了f(z)=u(x,y)+iv(x,y)这种类型的复变函数,经过多次的验证,自己证明了对u这个方程求x次导数等于对v求y次导数,同时对u求y次导数等于负的对v求x次导数时,这个方程可以微分。
这也叫柯西条件。
这个方程组最初出现在达朗贝尔的着作中。
后来欧拉将此方程组和解析函数联系起来。
然后柯西采用这些方程来构建他的函数理论。
后来黎曼也证明的这个情况。
黎曼关于此函数理论的论文于1851年问世。
而脑洞大的黎曼在想,万一有f(z)=u(x,y)+iv(x,y)+jw(x,y)这样的怪东西,会有什么样的对称现象?
是对u求x次导数,等于v求y次导数,不对,不对称这个。
重来一遍。
是对u和v求x次导数等于,对w求y的导数;对v和w求x次导数等于对u求y次导数;对u和w求x次导数等于v求y次导数?和对u和v求y次导数等于,等于负的对w求x的导数;对v和w求y次导数等于负的对u求x次导数;对u和w求x次导数,等于负的v求x次导数?可以出现这样的轮换对称,那实数,i和j之间到底是什么?
这个j是后来的汉密尔顿发现的四元数这样的东西吗?
这样的对称性的这种公式可以存在并且对称吗?
那对于f(w)=u(x,y,z)+iv(x,y,z)这样个公式呢?这是个什么鬼?
黎曼一个走神,又想到了其他问题,把这个忘了。
柯西脑子里仅仅有一堆高维空间可微的样子,心里害怕,便不敢去触碰了。
喜欢数学心请大家收藏:()数学心
至尊战皇 译文欣赏:博伽瓦谭 在下潘凤,字无双 快穿之炮灰得偿所愿 大明:开局气疯朱元璋,死不登基 我一枪一剑杀穿大陆 国运:拥有多重身份的我很合理吧 永恒大陆之命运 新人驾到 暗无 混迹娱乐圈的日子 宗门全是美强惨,小师妹是真疯批 农夫是概念神?三叶草了解一下! 穿到八零,我自带锦鲤系统! 穿成商户女摆烂,竟然还要逃难! 重生在宝可梦,我的后台超硬 摊牌了,我爹是绝顶高手! 玄灵界都知道我柔弱可怜但能打 我的徒弟不对劲 哦豁!虐文炮灰不干了!
已完结,新书求支持!小神医魂穿女尊王朝,原主臭名昭著,残暴不仁,身后留下一堆烂摊子。家徒四壁,茅屋漏雨,粮缸又已见了底。面对美貌的夫君,又瞅瞅丑不拉叽的自己,她狂奔在一条通往钢牙小白兔的康庄大道上!敢觊觎她夫君?揍,没有拳头解决不了的事情!如果有,那就接着揍!穷?医术,香粉,布艺,美食,酒庄,生意做起来,铺子开...
我林凡成为富家子弟,必须得享受。修炼?不现实的事情。最多加加点。阅读此书可能带来不适,此书已经注满正能量。全订验证群532355835逆天书普通群534442331...
作为一个无节操无底线无尺度的三无大龄少女,男人于她而言不过是解决生理需求的生活用品,所以她并不在意他们视她如玩物,将她介绍给别人,搂着名门千金假装不认识她,故意贬低她否认与她的情史,利用她欺骗她甚至当众羞辱她。她很懒,懒得跟无所谓的人计较太多。但,等她识趣地走人了还指望她乖乖躺回他们身下?他们以为全世界的男人只有他们才长了根能用的东西?她只想说,呵呵。Nph文,6个男主,有处有非处,伪骨科。已完结~感谢所有妹子们!...
全本免费,新书斗罗无敌从俘获女神开始斗罗之收徒就变强斗罗之酒剑斗罗王圣穿越到了斗罗1的世界之中,在觉醒武魂的那一天,竟然是先天二十级的魂力。看王圣如何组建属于他自己的7怪。当他的7怪与唐三的7怪相遇时,又会是怎样的一个场面?谁强?谁弱?谁才是真正的主角!粉丝群1304623681...
蜀山有玄门正宗,一家独大。主角修炼的是魔门正宗。群号紫云宫22117110。...
一睁眼回到六零年,上一世是孤儿的明暖这一世拥有了父母家人,在成长的过程中,还有一个他,青梅竹马,咋这么腹黑呢!...